STUDY MODULE DESCRIPTION FORM						
, , , , , , , , , , , , , , , , , , , ,		Code 010634361010642397				
Field of study	Profile of study	Year /Semester				
Transport	(general academic, practical) (brak)	3/6				
Elective path/specialty	Subject offered in:	Course (compulsory, elective)				
Engineering of Pipeline Transport	Polish	obligatory				
Cycle of study:	Form of study (full-time,part-time)					
First-cycle studies	part-time					
No. of hours		No. of credits				
Lecture: 18 Classes: - Laboratory: 9	Project/seminars:	4				
Status of the course in the study program (Basic, major, other) (university-wide, from another field)						
(brak)	(brak)					
Education areas and fields of science and art		ECTS distribution (number and %)				
technical sciences		4 100%				
Technical sciences		4 100%				

Responsible for subject / lecturer:

dr inż. Damian Frąckowiak

email: damian.frackowiak@put.poznan.pl

tel. 61 665 2054

Faculty of Transport Engineering)

ul. Piotrowo 3 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Knowledge of the basics of machine design, fluid mechanics, automation and electrical engineering basics.		
2	Skills	Ability to solve problems in the field of fluid mechanics and base of machines design.		
3	Social competencies	Understanding the need to expand their competence, willingness to work together as a team.		

Assumptions and objectives of the course:

- Understanding the structure and principles of hydraulics and pneumatics.
- Familiarizing yourself with the basic propulsion systems and controls.
- Getting to know the basics of design for hydraulic and pneumatic systems.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Has basic knowledge in the field of fluid mechanics directed to hydraulic and pneumatic drives [K1A_W04]
- 2. Has basic knowledge of the construction and operation of hydraulic and pneumatic drives and systems, which are the area of ??machine construction [K1A_W13]

Skills:

- 1. He can plan and perform measurements in hydraulic and pneumatic systems, and interpret results and draw conclusions [K1A_U07]
- 2. He can draw the basic elements and schematics of hydraulic and pneumatic systems in accordance with the principles of technical drawing, according to European standards [K1A_U12]
- 3. He can design the technology of making a simple hydraulic and pneumatic system [K1A_U14]

Social competencies:

- 1. He understands the need and knows the possibilities of continuous training, knows the need to acquire new knowledge for professional development [K1A_K01]
- 2. He can think and act in an entrepreneurial way, make decisions, act for the development of the employer and society [K1A_K07]
- 3. Is aware of the transfer of acquired knowledge to the public, makes efforts to make this information understandable [K1A_K08]

Assessment methods of study outcomes

- Written exam of the course.
- Assessment of laboratory exercises based on assessments of the reports and short entrance tests.

Course description

The principle of operation and ownership of hydraulic drives. Application of hydrostatic and hydrodynamic drives. Hydraulic fluids. Hydraulic components: pumps, valves, motors, actuators, accumulators, hydraulic power units. Hydrostatic systems. Systems with multiple receivers. Hydrostatic transmissions, hydraulic servo drives. The structure of the pneumatic drive and control. Pneumatics applications. Systems of preparation of compressed air. Elements of pneumatic systems. General principles for design of hydraulic and pneumatic drives and controls.

Basic bibliography:

- 1. Osiecki A.: ?Hydrostatyczny napęd maszyn?. WNT, Warszawa, 2004.
- 2. Stryczek St.: ?Napęd hydrostatyczny ? elementy. WNT, Warszawa, 2003.
- 3. Stryczek St.: ?Napęd hydrostatyczny ? układy? . WNT, Warszawa, 2003.
- 4. Szenajch W.: ?Napęd i sterowanie pneumatyczne?. WNT, Warszawa, 2003.

Additional bibliography:

- 1. Pojazdy samochodowe? napęd i sterowanie hydrauliczne. WKŁ, W-wa,1999.
- 2. Pr. zb. pod red. J. Świdra: Sterowanie i automatyzacja procesów technologicznych i układów mechatronicznych. Wyd. Politechniki Śląskiej, Gliwice, 2002.

Result of average student's workload

Activity	Time (working hours)
1. Preparation for classes	19
2. Participation in classes	27
3. Consolidation of the content of classes / report	10
4. Consultations	2
5. Preparation for the exam / pass	40
6. Participation in the exam / pass	2

Student's workload

Source of workload	hours	ECTS		
Total workload	100	4		
Contact hours	31	1		
Practical activities	54	2		